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Recent progress in Earth Observation

● Satellite technology (Sensors, HW, SW)

● Ground network infrastructure

→ Shift towards small, affordable and disposable satellites.

Increasing demands for hyperspectral data providers

● Disaster response
● Environmental monitoring
● Security & Surveillance

Challenges

HF1A - South African Coast
10 October 2024 08:23:09 UTC

High spatial / 
spectral res 
images

Limited bandwidth 
for downlink 
transmissions

Small 
operational costsx x

Reduce the amount of data that needs to be sent to 
Earth by processing hyperspectral images in orbit.
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From satellite acquisition to hyperspectral product

Kuva Space Data 
Interface
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On-orbit cloud detection
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Limitations of Vision Transformers for Hyperspectral Imaging:

● Data Requirements: Extensive, high-quality labeled datasets
● High Computational Load: Large number of parameters
● Large Model Size: Tens-Hundreds of MBs >> uplink capacity
● Latency Constraints: Hinder near-real-time operations

Lite Vision Transformer with Enhanced Self-Attention☨

● Reduced wavelengths (RGB-NIR only);
● Small inference latency (s to ms);
● Small number of parameters;
● Periodic fine-tuning & uplink;
● Maximum 2MB (= Max 1M parameters using float16);
● > 90% F1-Score on binary class.

Approach

☨ Yang, Chenglin et al. “Lite Vision Transformer with Enhanced Self-Attention.” 2022 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021): 
11988-11998.
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On-orbit EO pipeline
Model Training

● Datasets
○ L8-Biome (clear / thin / thick / shadow - VIS-NIR-SWIR)
○ 95-Cloud (cloud / no cloud - VNIR)

● Aggressive augmentation are key to generalization
○ Geometric augmentations (flipping, affine transformations)
○ Radiometric augmentations (brightness, gamma, blurring)

Model Evaluation

● Benchmark LVT across various sensors:
○ PRISMA [HSI]     –> Qualitative Inspection (WIP)
○ Sentinel-2 [MSI] –> Comparison against FMASK

● LVT reaches 90.28% F1-Score on binary classification (test set)
● Inference speed on 384 x 384 x 4 image = 2ms on NVIDIA 3090

Early results suggest our model have the capacity to work even across 
different sensor technologies and satellites despite have been developed 
just with Landsat imagery.

On-board deployment

The incorporation of GPU will be investigated in a recently secured project 
with Copernicus Security Services.

https://landsat.usgs.gov/landsat-8-cloud-cover-assessment-validation-data
https://github.com/SorourMo/95-Cloud-An-Extension-to-38-Cloud-Dataset
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Benchmarking 
inference

Raspberry Pi 3B (Cortex A-53) - Hyperfield-1

● Ubuntu 22.04.3 LTS

● PyTorch 2.1.1

● Image size (4, 384, 384)

● Inference latency: 5.43 s / image

NVIDIA Jetson AGX Orin Dev Kit - Hyperfield-2

● Ubuntu 22.04 at 30W power mode

● Jetpack 6.1 SDK with L4T PyTorch Image

● Inference latency: 32 ms / image (4 x 384 x 384)

● = 431ms / HF-1 image (64 x 4 x 256 x 256)



S M A R T E R   D A T A   F O R   A   S T R O N G E R  P L A N E T

On-ground cloud detection
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On-ground  Cloud Detection
Training Workflow

Model Selection

● Vision Transformer with patch_size = 4 and emb_dim = 192
● Keep model size down to 5.5M parameters (tiny)

Model Training
● Datasets: L8-Biome (clear / thin / thick / shadow - VIS-NIR-SWIR)
● Cosine learning rate scheduler with linear warmup
● Same augmentations as on-orbit cloud detection

○ Geometric augmentations (flipping, affine transformations)
○ Radiometric augmentations (brightness, gamma, blurring)

Iterative Fine-Tuning

● L8-Biome contains inconsistencies (especially cloud shadows)
● Vision Transformers are data-hungry (need >> 96 L8 images)
● Use L8-Biome to train v1 then use v1 as pre-annotator
● Encord annotation platform to manually fin-tune annotations
● Gradual increase of data set to 600 annotated PRISMA images Ontology definition in L8-Biome and Encord annotation platform

https://landsat.usgs.gov/landsat-8-cloud-cover-assessment-validation-data
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On-ground  Cloud Detection
Manual PRISMA image annotations

● Sample of PRISMA image and its 
manual expert annotation (top).

○ Yellow = Thick Cloud
○ Green = Thin Cloud
○ Light Blue = Cloud Shadow
○ Dark Blue =  Clear

● Bottom row = the cropped and blurred 
augmentation of the selected sample.

● Carefully chosen set of PRISMA 
images to overcome the known 
limitations of the L8-Biome data set.
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Iterative fine-tuning

On-ground  Cloud Detection

Epoch 
Number

ViT 
version

# PRISMA 
images

F1-Score 
(%)

271 v1 N/A 92.78

374 v2 250 94.02

593 v3 500 94.22

600 v4 600 94.45

v2

v3 v4

Classification metrics across fine-tuning runs
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On-ground  Cloud Detection
Inference on PRISMA imagery
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On-ground  Cloud Detection
Application to raw HF-1A imagery (uncalibrated DN)

Colfax, USA - 1 November 2024 17:14:53 UTC
LVT ViT
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Conclusion
● How much “instrument agnostic” are the current state of 

the art algorithms?
○ Tailored for specific EO missions

■ Fmask → Landsat + Sentinel
■ Handcrafted thresholds and band ratios

○ Requires mission-specific inputs
■ S2cloudless requires 10 S2 bands
■ CloudSEN12 adds S1 (SAR), DEM, surface 

water occurrence and land cover masks

● Can the AI based approaches really become instrument 
agnostic?

○ Yes, but data and algorithms go hand in hand
○ Key = 

■ Common & minimalistic data set, with a …
■ sufficiently complex model architecture that …
■ lead to rich image representations (training)

○ “An uncalibrated cloud remains a cloud”
○ SSL offer promising avenues for better generalization

HF1A - The Legion Mountains
2024-09-20 at 18:40:32 UTC
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On-ground  Cloud Detection
Known Limitations

● Missing Cirrus Band @1.37um
○ Bad distinction between ice / 

snow / high altitude clouds.
○ HF-2 will integrate SWIR-I

● Spectral Sensitivity Analysis
○ What if we add more bands?
○ Explainable AI to help identify the 

importance spectral channels

● Tradeoff size vs. Performance [WIP]
○ How does ViT/S-4 perform?
○ How about ViT/S-6?



17 C O N F I D E N T I A L   |   ©  2 0 2 2

Deploying cloud detection on-orbit (CPU)

On-Orbit EO Pipeline

Model Preparation

● Post-Training Quantization using Intel’s Neural 
Compressor (CPU);

● Trade-off performance loss vs. memory footprint

● Sweet spot found around 

● 86.55% accuracy

● 1.4MB memory footprint

Model Deployment

● TorchScript’s Just-In-Time compiler

● Platform-agnostic TorchScript file (4.3MB)

on-orbit upload 
time of ~2 days
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Cloud Detection

On orbit EO pipeline

Robustness against misalignment

● Accuracy / JI as function of channel misalignment

● Acceptable performance up to 5 pixels shift (~125m)

● With constant v = 7.68 m/ms —> 16.28 ms timestamp error
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Cloud Detection under channel misregistration (10 pixels)

On orbit EO Pipeline
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On-orbit  Cloud Detection
Performing Band Alignment

ALIKED + 
LightGlue

TLE Aligner

~150x faster!
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Two-line Element Aligner

On orbit EO pipeline

● Underlying assumptions

● Satellite trajectory is smooth

● Telemetry is stable 

● Velocity-based alignment

● Δt between acquisitions

● Shift bands by integer #pixels

● Sources of uncertainties

● Acquisition time stamps

● Velocity of satellite

Q: What is the effect on downstream cloud detection?

Raw unaligned image TLE-aligned image

HF1A - Drakensberg Mountains (South Africa) - 10 October 2024 08:23:09 UTC



22 C O N F I D E N T I A L   |   ©  2 0 2 2

Copernicus Security Services

On-orbit EO pipeline

Hyperfield for rapid response

● On-orbit processing of HF data

● On-orbit detection and monitoring

● Leverage sat-to-sat and sat-to-IOT

Benchmarking on-orbit GPUs

● NVIDIA AGX Orin 64GB

● NVIDIA Orin NX 16GB

● NVIDIA Jetson Nano 8GB

Various on-orbit processing scenarios

● Band alignment

● Cloud detection

● Georeferencing

Example of tiny ViT running onboard an NVIDIA AGX Orin @50W power mode
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Annotation Pipeline

Encord Annotations

❓

Annotator Annotator Annotator

Validator
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NIR VIS (RGB) SWIR

On-ground  Cloud Detection
Encord Input Images
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Thresholding the NIR bands leads to accurate cloud shadow masks

Encord Annotations

Agent tool allows to copy 
annotations across frames
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Python API for convenient pre-annotations

Encord Annotations

pre-annotated .tif

Inference using ViT on 256 x 256 patches 

Annotations are orders of magnitude faster and increasingly easier
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Icons


