KUVA SPACE

Advances in deep learning spectral models for mission-agnostic cloud detection

Arthur Vandenhoeke – 13th November 2024, Workshop on International Cooperation in Spaceborne Imaging Spectroscopy

Challenges

Recent progress in Earth Observation

- Satellite technology (Sensors, HW, SW)
- Ground network infrastructure

 \rightarrow Shift towards **small**, **affordable** and **disposable** satellites.

Increasing demands for hyperspectral data providers

- Disaster response
- Environmental monitoring
- Security & Surveillance

High spatial / spectral res images Limited bandwidthfor downlinktransmissions

Small • operational costs

Reduce the amount of data that needs to be sent to Earth by **processing hyperspectral images in orbit**.

HF1A - South African Coast 10 October 2024 08:23:09 UTC

Data Processing chain

From satellite acquisition to hyperspectral product

On-ground processing

On-orbit cloud detection

Approach

Limitations of Vision Transformers for Hyperspectral Imaging:

- Data Requirements: Extensive, high-quality labeled datasets
- High Computational Load: Large number of parameters
- Large Model Size: Tens-Hundreds of MBs >> uplink capacity
- Latency Constraints: Hinder near-real-time operations

Lite Vision Transformer with Enhanced Self-Attention[†]

- Reduced wavelengths (RGB-NIR only);
- Small inference latency (s to ms);
- Small number of parameters;
- Periodic fine-tuning & uplink;

5

- Maximum 2MB (= Max 1M parameters using float16);
- > 90% F1-Score on binary class.

[†] Yang, Chenglin et al. "Lite Vision Transformer with Enhanced Self-Attention." 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021): 11988-11998.

On-orbit EO pipeline

Model Training

• Datasets

- <u>L8-Biome</u> (clear / thin / thick / shadow VIS-NIR-SWIR)
- <u>95-Cloud</u> (cloud / no cloud VNIR)
- Aggressive augmentation are key to generalization
 - Geometric augmentations (flipping, affine transformations)
 - Radiometric augmentations (brightness, gamma, blurring)

Model Evaluation

- Benchmark LVT across various sensors:
 - PRISMA [HSI] -> Qualitative Inspection (WIP)
 - Sentinel-2 [MSI] -> Comparison against FMASK
- LVT reaches 90.28% F1-Score on binary classification (test set)
- Inference speed on 384 x 384 x 4 image = 2ms on NVIDIA 3090

Early results suggest our model have the capacity to **work even across different sensor technologies and <u>satellites</u>** despite have been developed just with Landsat imagery.

On-board deployment

The incorporation of GPU will be investigated in a recently secured project with Copernicus Security Services.

Benchmarking inference

Raspberry Pi 3B (Cortex A-53) - Hyperfield-1

- Ubuntu 22.04.3 LTS
- PyTorch 2.1.1
- Image size (4, 384, 384)
- Inference latency: **5.43 s / image**

NVIDIA Jetson AGX Orin Dev Kit - Hyperfield-2

- Ubuntu 22.04 at 30W power mode
- Jetpack 6.1 SDK with L4T PyTorch Image
- Inference latency: **32 ms / image** (4 x 384 x 384)
- = **431ms / HF-1 image** (64 × 4 × 256 × 256)

Training Workflow

Model Selection

- Vision Transformer with patch_size = 4 and emb_dim = 192
- Keep model size down to 5.5M parameters (tiny)

Model Training

- Datasets: <u>L8-Biome</u> (clear / thin / thick / shadow VIS-NIR-SWIR)
- Cosine learning rate scheduler with linear warmup
- Same augmentations as on-orbit cloud detection
 - Geometric augmentations (flipping, affine transformations)
 - Radiometric augmentations (brightness, gamma, blurring)

Iterative Fine-Tuning

- L8-Biome contains inconsistencies (especially cloud shadows)
- Vision Transformers are data-hungry (need >> 96 L8 images)
- Use L8-Biome to train v1 then use v1 as pre-annotator
- Encord annotation platform to manually fin-tune annotations
- Gradual increase of data set to 600 annotated PRISMA images

Ontology definition in L8-Biome and Encord annotation platform

Manual PRISMA image annotations

- Sample of **PRISMA image** and its manual expert annotation (top).
 - Yellow = Thick Cloud
 - Green = Thin Cloud
 - Light Blue = Cloud Shadow
 - Dark Blue = Clear
- Bottom row = the cropped and blurred augmentation of the selected sample.
- Carefully chosen set of PRISMA images to overcome the known limitations of the L8-Biome data set.

200

250

300

Iterative fine-tuning

Epoch Number	ViT version	# PRISMA images	F1-Score (%)		
271	v1	N/A	92.78		
374	v2	250	94.02 94.22		
593	v3	500			
600	v4	600	94.45		

Classification metrics across fine-tuning runs

Inference on PRISMA imagery

Predicted Labels

SWIR-I Band

KUVA SPACE

Application to raw HF-1A imagery (uncalibrated DN)

Colfax, USA - 1 November 2024 17:14:53 UTC

Conclusion

- How much "instrument agnostic" are the current state of the art algorithms?
 - Tailored for specific EO missions
 - Fmask \rightarrow Landsat + Sentinel
 - Handcrafted thresholds and band ratios
 - Requires mission-specific inputs
 - S2cloudless requires 10 S2 bands
 - CloudSEN12 adds S1 (SAR), DEM, surface water occurrence and land cover masks
- Can the AI based approaches really become instrument agnostic?
 - Yes, but data and algorithms go hand in hand
 - Key =
 - Common & minimalistic data set, with a ...
 - sufficiently complex model architecture that ...
 - lead to rich image representations (training)
 - "An uncalibrated cloud remains a cloud"
 - SSL offer promising avenues for better generalization

HF1A - The Legion Mountains 2024-09-20 at 18:40:32 UTC

KUVA SPACE

TOGETHER TOWARDS A SUSTAINABLE PLANET AND PROSPEROUS HUMANKIND

Kuva Space Oy Otakaari 5, 02150 | Espoo, Finland

arthur.vandenhoeke@kuvaspace.com

kuvaspace.com

Known Limitations

- Missing Cirrus Band @1.37um
 - Bad distinction between ice / snow / high altitude clouds.
 - HF-2 will integrate SWIR-I
- Spectral Sensitivity Analysis
 - What if we add more bands?
 - Explainable AI to help identify the importance spectral channels
- Tradeoff size vs. Performance [WIP]
 - How does ViT/S-4 perform?
 - How about ViT/S-6?

On-Orbit EO Pipeline

Deploying cloud detection on-orbit (CPU)

Model Preparation

- Post-Training Quantization using Intel's Neural Compressor (CPU);
- Trade-off performance loss vs. memory footprint
- Sweet spot found around

on-orbit upload time of ~2 days

• 1.4MB memory footprint

86.55% accuracy

Model Deployment

- TorchScript's Just-In-Time compiler
- Platform-agnostic TorchScript file (4.3MB)

2023-11-30 22:25:10 [INF	D] Tune 86 result is: [Ac	curacy (in	nt8 fp3	32): 0.85	73 0.904	2, Duration (se	conds) (int8 fp32): 143.6224 152.9798], Best tune result is: n
a 2023-11-30 22:25:10 [TNE	1		ult c+	atistics	***	***	*
2023-11-30 22.23.10 [INFO)] ************************************	AATUILE KES	ull St	latistics	*****	****	×1
2023-11-30 22:25:10 [INF(0] Info Type	Baseline	I Tur	ne 86 res	ult Be	est tune result	1
2023-11-30 22:25:10 [INF)] ++				+		-+
2023-11-30 22:25:10 [INF	D] Accuracy	0.9042	1	0.8573	i	n/a	
2023-11-30 22:25:10 [INFO] Duration (seconds)	152.9798	j 1	43.6224	i	n/a	
2023-11-30 22:25:10 [INF()] ++		-+		+		-+
2023-11-30 22:25:10 [INFO	D] Save tuning history to	/home/art	hur/Do	ocuments/	reps/kuv	/a-projects/top:	ics/cloud_detection/nc_workspace/2023-11-30_12-28-39/./history.
napshot.							
2023-11-30 22:25:11 [INFO	<pre>D] fallback [('module.lvt</pre>	.module.0.	1.0.ml	lp.fc1',	'Linear')] to fp32	
2023-11-30 22:25:11 [INFO	D] Fx trace of the entire	model fai	lled, W	Ve will c	onduct a	auto quantizatio	n
2023-11-30 22:25:15 [INF()] *********Mixed Precis	ion Statis	stics**	okokokokok			
2023-11-30 22:25:15 [INF(0] +	++-	+	++			
2023-11-30 22:25:15 [INF	0] Ор Туре	Total	INT8	FP32			
2023-11-30 22:25:15 [INF)] +	++-	+	++			
2023-11-30 22:25:15 [INFO	D] Conv2d	33	31	2			
2023-11-30 22:25:15 [INFO	J] LayerNorm		0	28			
2023-11-30 22:25:15 [INFO	J] quantize_per_tensor	6/	6/				
2023-11-30 22:25:15 [INFO	J] Linear	48	45				
2023-11-30 22:25:15 [INFO	Di l Drepout		0/ 1	40			
2023-11-30 22:25:15 [INF(Di l gotattr	40	12	40			
2023-11-30 22:25:15 [INFO	actitem		12				
2023-11-30 22:25:15 [INF	1 ConvRel II2d		1 1				
2023-11-30 22:25:15 [INF)] +	++-		++			
2023-11-30 22:25:15 [INF)] Pass guantize model el	apsed time	: 4957	7.95 ms			
Validatian Datal and a 0.400%							00/00 [00:01 -00:00 4 70-8
validation DataLoader 0: 100%							82/82 [02:21<00:00, 1./35/10
Validate metric	DataLoader	0	1				
		-					
val_loss	0.41093004965	/82100					
Val metric 0.865566/3049926/6		1					

On orbit EO pipeline

Cloud Detection

Robustness against misalignment Segmentation Performance vs. Misalignment Misaligned predictions Accuracy 1.0 Accuracy / JI as function of channel misalignment Misaligned predictions Jaccard Index Acceptable performance up to **5 pixels shift (~125m)** 0.8 -With constant v = $7.68 \text{ m/ms} \rightarrow 16.28 \text{ ms}$ timestamp error Aligned RGB Bands Misaligned RGB Bands Performance 4.0 100 150 200 0.2 -250 300 0.0 350 10

Pixel shift (px units)

150

100

200

250

350

50

100

150

200

250

300

300

On orbit EO Pipeline

Cloud Detection under channel misregistration (10 pixels)

On-orbit Cloud Detection

Performing Band Alignment

On orbit EO pipeline

Two-line Element Aligner

- Underlying assumptions
 - Satellite trajectory is smooth
 - Telemetry is stable
- Velocity-based alignment
 - Δt between acquisitions
 - Shift bands by integer #pixels
- Sources of uncertainties
 - Acquisition time stamps
 - Velocity of satellite
- **Q**: What is the effect on downstream cloud detection?

Raw unaligned image

TLE-aligned image

HF1A - Drakensberg Mountains (South Africa) - 10 October 2024 08:23:09 UTC

On-orbit EO pipeline

Copernicus Security Services

Hyperfield for rapid response

- On-orbit processing of HF data
- On-orbit detection and monitoring
- Leverage sat-to-sat and sat-to-IOT

Benchmarking on-orbit GPUs

- NVIDIA AGX Orin 64GB
- NVIDIA Orin NX 16GB
- NVIDIA Jetson Nano 8GB

Various on-orbit processing scenarios

- Band alignment
- Cloud detection
- Georeferencing

Example of tiny ViT running onboard an NVIDIA AGX Orin @50W power mode

Encord Annotations

Encord Input Images

Encord Annotations

Thresholding the NIR bands leads to accurate cloud shadow masks

Encord Annotations

Python API for convenient pre-annotations

Inference using ViT on 256 x 256 patches

pre-annotated .tif

Annotations are orders of magnitude **faster** and increasingly **easier**

lcons

